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While generative Artificial Intelligence (AI) has the potential to improve kidney 
care, it also poses substantial challenges. Applications under discussion touch 
on every aspect of treatment, including the creation of new prognostic tools and 
methodologies, personalized medical education for professionals and patients, 
and protocols that alleviate the burden of administrative tasks. FME is developing 
an AI framework for clinical workflows that considers both the benefits and risks 
that AI poses for the future of patient care.  

The development of generative Artificial Intelligence 
(AI) has created excitement and prompted vigorous 
debate across various industries, including healthcare.1 
Dubbed “Gen AI,” this novel technology transcends 
conventional rule-based systems, data analysis, and 
predictions. Departing from the familiar confines of 
traditional AI, generative AI ventures into uncharted 
territory where machines wield the power of creativity 
sans human intervention.2 

Understanding Generative AI’s  
Unconventional Pathways
Generative AI stands apart because of its ability to 
create human-like content—images, text, melodies, 
or even entire narratives—using complex computer 
algorithms. These differ from conventional machine 
learning algorithms that can generate simple outputs. 
Instead, generative models create new content based 
on an assortment of data on which they have been 
trained by weaving together semantic patterns and 
knowledge structures.2,3

Potential Benefits of Generative AI in Kidney Care
Generative AI systems, particularly large language 
models (LLMs), hold numerous potential applications 
and may revolutionize several aspects of healthcare.4,5,6

• Clinical Insights and Powerful Prognostic Tools: 
A recent systematic review highlighted that most 
published studies focus on the use of LLMs as 
medical chatbots and to generate patient information 
and clinical documentation as well as for patient 
education and to simplify imaging reports.7 Generative 
AI and multimodal LLMs may have direct clinical 
applications, such as generating diagnostic 8,9,10,11 
and prognostic 12,13 predictions, given their ability to 
encode medical knowledge and/or interpret medical 
signs and symptoms similar to semantic elements.12,13 
For instance, Kanda and colleagues utilized an early 
natural language processing (NLP) architecture, 
word2vec, to analyze chronic kidney disease (CKD) 

literature, accurately predicting death and end-stage 
kidney disease (ESKD) onset. With the advent of more 
advanced LLMs, coupled with fine-tuning in the medical 
domain, highly accurate outcome predictions can be 
generated directly from medical notes, referral letters, 
and patients’ narratives without the need to document 
medical encounters in structured electronic health 
record systems, thus reducing documentation burden 
and limitations due to incomplete ontologies.12,15 

• Personalized Care: New LLM architectures like pre-
trained transformers offer broader possibilities for 
analyzing multimodal data and detecting nuanced 
associations. These advancements enable language-
understanding technologies to learn patterns across 
various data types, such as comorbidity codes, lab 
tests, images, clinical narratives, and patient-reported 
outcomes. For example, Savcisens et al. demonstrated 
the effectiveness of this approach in predictive 
modeling using life-events data, showing that these 
models could accurately predict diverse outcomes 
such as early mortality and personality nuances by 
learning patterns from detailed event sequences.16 

Departing from the familiar 
confines of traditional AI, 
generative AI ventures into 
uncharted territory where 
machines wield the power 
of creativity sans human 
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• Efficiency and Cost Savings: Generative AI can 
alleviate the administrative burden on healthcare 
staff, including time-consuming non-medical 
tasks.17,18,19,20,21,22,23 Streamlining these tasks can save 
time, minimize disruptions, and potentially enhance 
patient-clinician interactions. Studies show that LLMs 
can summarize medical notes and dialogues with 
high accuracy.24,25 For instance, FME Global Medical 
Office and Santa Barbara Smart Health developed 
software leveraging GPT-4 to transcribe patient-
physician interactions, achieving reliable abstraction 
of 33 medical elements, including pre-existing 
medical conditions, drug prescriptions, biochemical 
parameters, active problems, and treatment plans. The 
system produced a reliable and accurate summary of 
medical concepts in a small proof-of-concept study. 
FME is exploring how generative AI might streamline the 
process of collecting patient referral information, with 
the potential to expedite referrals and admissions and 
enhance data entry accuracy. We are also investigating 
the development of a ChatGPT-like tool to assist 
staff in offering targeted guidance for handling non-
clinical tasks, with the goal of reducing staff burden 
and supporting new clinical leaders. This includes 

examining how the tool could navigate intricate 
requirements related to Worker’s Compensation and 
the Conditions for Coverage for ESKD Facilities. 
Additionally, FME aims to reduce patient attrition 
and improve their experience.26,27,28 By considering 
the implementation of an AI-guided referral pathway 
and AI-powered case management, we hope to 
assist FME’s Continuity of Care team in identifying 
patients at high risk of attrition, conducting root cause 
analyses, and providing data-driven insights to case 
managers (Figure 1). 

FIGURE 1  |  AI-POWERED CARE MANAGEMENT 
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• Tailored Medical Education: Personalizing medical 
education for healthcare professionals and patients is 
another promising area of application for generative 
AI.26,27,28 We utilized retrieval-augmented generation 
(RAG), a novel AI-driven approach, to efficiently 
process and extract meaningful information from 
published literature on uremic toxins. The process 
involved preparing a curated literature database, 
creating a vector database from curated literature,  
retrieving relevant information based on queries, 
and generating responses using LLMs incorporating 
retrieved information. Although RAG has significantly 
improved content generation, the potential for 
“hallucinations” persists, and the enhanced LLM 
outputs still require human verification. For more 
information on the hallucination topic, refer to 
“Potential Risks” below.

• Comprehensive Use of Data and Knowledge: 
Dietary management is crucial for patients with 
kidney failure undergoing dialysis, but personalized 
advice is challenging due to varying food preferences 
and other factors. By leveraging LLMs, there is 
potential to integrate patient demographics, clinical 
data, and food preferences to create tailored recipe 
recommendations.29,30 Renal Research Institute (RRI) 
tested the emergent ability of LLM to generate sound 
nutritional advice for people with CKD (Figure 2). While 
this approach has limitations in precise nutritional 
analysis for people with CKD, it’s important to note 

that this evaluation of LLM sheds light on the current 
knowledge base. For instance, in RRI’s study, ChatGPT 
underestimated calories, protein, fat, phosphorus, 
potassium, and sodium content on ChatGPT-generated 
recipes when compared with U.S. Department 
of Agriculture (USDA)-approved software. These 
discrepancies are much smaller with online pre-defined 
recipes (Figure 3). While the underlying knowledge 
basis of GPT-4 falls short in supporting nutritional 
analysis for people with kidney disease, incorporating 
LLMs in more complex architectures may enhance the 
accuracy of nutritional estimation.31,32,33

FIGURE 2  |  STUDY PROCESS FOR EVALUATING THE PERFORMANCE OF CHATGPT IN GENERATING NUTRITIONAL ADVICE 
FOR ESKD PATIENTS 
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Potential Risks of Generative AI in Kidney Care
Generative AI offers unprecedented potential to 
revolutionize patient care, diagnosis, and treatment 
methodologies. However, substantial risks remain.

• Biased Outputs from Training Data: Generative 
models learn from the data on which they are trained. If 
their training samples and datasets include biases, then 
those models can generate outputs that are ethically 
questionable.6 In the realm of kidney care, such biases 
could propagate treatment disparities or inequalities.

• Privacy and Security Concerns: Generative AI’s 
ability to generate synthetic data, which resembles 
real data, is tremendously useful in research and 
model training, but this capability comes with privacy 
implications. If the original datasets used to train 
the generative AI are not adequately secured, there 
is a risk that the synthetic data could inadvertently 
reveal sensitive personal information. Furthermore, 
machine learning systems in sensitive domains such 
as healthcare are particularly vulnerable to adversarial 
AI attacks where malicious actors can manipulate or 
exploit the models by introducing carefully crafted 
inputs to the system.34,35

 
• Hallucinations in AI Responses: In the context of 

generative AI, “hallucinations” refer to the generation 
of responses that are not logically or semantically 
coherent or are not relevant to the input prompt. 

These hallucinations can occur when generative 
AI formulates responses based on patterns or 
associations it has learned from its training data 
without fully understanding the meaning or context 
of the input prompt. This could pose serious risks to 
patient safety and well-being if implemented without 
proper verification or oversight.36

 
• Transparency and Explainability Challenges: Unlike 

traditional rule-based AI systems where decision-making 
logic is explicit and interpretable, generative AI models 
often operate as “black boxes,” making it difficult for 
clinicians and patients to comprehend how generative 
AI arrived at a particular decision.36 Addressing this 
risk requires meaningful human-AI collaboration, which 
involves integrating AI systems seamlessly into clinical 
workflows to enhance efficiency, accuracy, and patient 
outcomes while preserving the critical role of human 
expertise, empathy, and judgment in delivering high-
quality care.37 

Generative AI offers 
unprecedented potential to 
revolutionize patient care, 
diagnosis, and treatment 
methodologies. However, 
substantial risks remain.

FIGURE 3  |  RELATIVE ESTIMATES OF NUTRITIONAL VALUES OF ONLINE PRE-DEFINED RECIPES AND CHATGPT-GENERATED 
RECIPES WHEN COMPARED WITH USDA-APPROVED SOFTWARE 

Calories (kcal)

Sodium (mg)

Potassium (mg)

Phosphorus (mg)Fats (g)

Carbohydrates (g)

Protein (g)

0 (%)

25 (%)

50 (%)

75 (%)

100 (%)

Online pre-defined recipes

ChatGPT-generated recipes



Dr. Emel Hamilton 
Vice President and Global Leader of Clinical Systems 
Global Medical Office

Dr. Hamilton is a multifaceted healthcare professional with a unique blend of medical expertise, nursing proficiency, and a 
deep understanding of clinical informatics. She earned her medical degree (MD) from Dokuz Eylül Üniversitesi in Turkey, 
laying a solid foundation for her comprehensive perspective on healthcare challenges. Further enhancing her skill set, she 
also holds a master’s degree in nursing and clinical informatics (MSN/INF). Dr. Hamilton is a recognized expert in Health 
Information Exchange (HIE) and Electronic Health Records (EHR) nurse practice standards and has contributed several 
significant publications in the field. Her expertise extends beyond traditional healthcare boundaries into the realm of AI and 
her balanced perspective allows her to adeptly navigate the AI landscape, always with a keen eye on harnessing its potential 
while ensuring paramount importance to patient safety and data security. Currently, Dr. Hamilton holds the position of 
Vice President and Global Leader of Clinical Systems at Fresenius Medical Care. Her approach to healthcare challenges is 
inherently collaborative, recognizing the crucial roles played by both humans and machines.

Zuwen Kuang  
Senior Vice President, Global Head of Data and Analytics 
Fresenius Medical Care

Zuwen Kuang is a skilled and experienced digital healthcare executive with a proven track record of success in the field of 
data and analytics. As the Global Head of Data and Analytics in Digital Technology and Innovation at Fresenius Medical Care, 
she leads a team responsible for building enterprise big data platforms, delivering advanced analytics, AI/GenAI solutions and 
digital interoperability capabilities. This enables the transformation of healthcare data into intelligence that predicts trends and 
reveals actionable insights that influence long-term business growth. 

Dr. Luca Neri  
Senior Director, Clinical Advanced Analytics, EMEA, AP, LATAM 
Global Medical Office

Dr. Neri leads the Data Science division for the EMEA, APAC, and LATAM regions of the Global Medical Office - Clinical 
Advanced Analytics department at Fresenius Medical Care. He joined Fresenius Medical Care in 2016. With almost 20 years 
of experience in epidemiology, outcomes research, and data science, Dr. Neri has acquired a broad range of analytical and 
methodological skills in the field of advanced analytics. The GMO-CAA Data Science team blends profound expertise in 
state-of-the-art machine learning techniques with dedication to the clinical integration of AI solutions in medical care.
 
Before joining Fresenius Medical Care, he held a postdoctoral position at the St. Louis University Center for Outcomes 
Research and was later appointed adjunct instructor of Health Management and Policy at the same institution. He also served 
as a scientific consultant and advisory board member for several commercial, scientific, and industrial clients and academic 
institutions. He earned his medical degree at the University of Milan School of Medicine, where he also earned a specialty 
degree and a PhD in environmental and occupational medicine.

Dr. Hanjie Zhang  
Senior Director of Computational Statistics & Artificial Intelligence  
Renal Research Institute

Hanjie Zhang, PhD joined Renal Research Institute in 2014. She received a master’s degree in statistics from Columbia 
University, New York, and a PhD in medical science from the University of Maastricht, The Netherlands. Hanjie has been 
involved in the design of several large cluster-randomized clinical trials and complex statistical analysis. She is also involved 
in designing, developing, and deploying enterprise solutions across the artificial intelligence spectrum, such as machine 
learning, and deep learning. During her tenure with Renal Research Institute, Hanjie has authored over 30 research articles in 
leading kidney journals.

Reflecting on Possibility
In our relentless pursuit of innovation, FME recognizes 
the immense potential of generative AI in revolutionizing 
clinical workflows. However, this potential must be 
harnessed responsibly. At FME, we are developing a 
trustworthy AI framework—one that prioritizes safety, 
security, and ethics. Our commitment extends beyond 
compliance to encompass the thoughtful integration of 
organizational values and change management principles. 
In this new era of healthcare, we remain steadfast in 
our mission to elevate patient care while upholding the 
highest standards of integrity and excellence.

At FME, we are developing a 
trustworthy AI framework—one 
that prioritizes safety, security, 
and ethics.

FME’s use of generative AI tools such as ChatGPT is focused on research or quality assessment purposes and not used for patient care. 
Renal Research Institute is a wholly owned subsidiary of Fresenius Medical Care.
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